We Love Computer Science So Much
Why Don’t More Students Share The Love?

Valerie Barr
Union College

April 4, 2013
False Assumptions - 1

Say “yes” if you drive a car.
Say “yes” if you ever wondered how a car engine works.
Say “yes” if you ever wanted to be an automotive engineer or designers.
Say “yes” if you are an automotive engineer or designer.

We Love Computer Science So Much
False Assumptions - 1

- Say “yes” if you drive a car.
False Assumptions - 1

- Say “yes” if you drive a car.
- Say “yes” if you ever wondered how a car engine works.
False Assumptions - 1

- Say “yes” if you drive a car.
- Say “yes” if you ever wondered how a car engine works.
- Say “yes” if you ever wanted to be an automotive engineer or designers.
False Assumptions - 1

- Say “yes” if you drive a car.
- Say “yes” if you ever wondered how a car engine works.
- Say “yes” if you ever wanted to be an automotive engineer or designers.
- Say “yes” if you are an automotive engineer or designer.
We, incorrectly, believe that today’s youth:
We, incorrectly, believe that today’s youth:

- are more technologically adept because they are tethered to phones, games, and social media

Yet we aren’t overrun with automotive engineers, and we aren’t overrun with computer scientists!
We, incorrectly, believe that today’s youth:

- are more technologically adept because they are tethered to phones, games, and social media
- are more curious about CS because they are tethered.....
We, incorrectly, believe that today’s youth:

- are more technologically adept because they are tethered to phones, games, and social media
- are more curious about CS because they are tethered.....

Yet we aren’t overrun with automotive engineers,
We, incorrectly, believe that today’s youth:

- are more technologically adept because they are tethered to phones, games, and social media
- are more curious about CS because they are tethered.....

Yet we aren’t overrun with automotive engineers,
and we aren’t overrun with computer scientists!
What is true today?

There are

- pockets of increased enrollment
- pockets of increased numbers of majors

These are not the same thing! And...

diversity is still lacking.
What is true today?

There are

- pockets of increased enrollment
- pockets of increased numbers of majors

These are not the same thing!

It’s just pockets. And...
What is true today?

There are

- pockets of increased enrollment
- pockets of increased numbers of majors

These are not the same thing!

It’s just pockets. And...

- diversity is still lacking.
What questions might we ask?

Can we increase enrollments everywhere? and how?

Besides # of majors, are there other measures of success?

Is 'relevance' really the key?
What questions might we ask?

- Can we increase enrollments everywhere? and how?
What questions might we ask?

- Can we increase enrollments everywhere? and how?
- Besides # of majors, are there other measures of success?
What questions might we ask?

- Can we increase enrollments everywhere? and how?
- Besides # of majors, are there other measures of success?
- Is ’relevance’ really the key?
What about excitement, engagement, and utility?

The Union College experiment:
Six theme-based introductory courses:
- Taming Big Data
- Robots Rule!
- Game Development
- Can Computers Think?
- Creative Computing
- Programming for Engineers

We Love Computer Science So Much
What about excitement, engagement, and utility?

The Union College experiment:

Six theme-based introductory courses:

- Taming Big Data
- Robots Rule!
- Game Development
- Can Computers Think?
- Creative Computing
- Programming for Engineers
Impact

<table>
<thead>
<tr>
<th>Year</th>
<th>Sections</th>
<th>Students</th>
<th># Majors Represented</th>
<th>% of Total Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>2011-2012</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2012-2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We Love Computer Science So Much
Impact

<table>
<thead>
<tr>
<th>Year</th>
<th>Sections</th>
<th>Students</th>
<th># Majors Represented</th>
<th>% of Total Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>11</td>
<td>181</td>
<td>21</td>
<td>50%</td>
</tr>
<tr>
<td>2012-2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2013-2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

We Love Computer Science So Much
<table>
<thead>
<tr>
<th>Year</th>
<th>Sections</th>
<th>Students</th>
<th># Majors Represented</th>
<th>% of Total Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>11</td>
<td>181</td>
<td>21</td>
<td>50%</td>
</tr>
<tr>
<td>2012-2013</td>
<td>9</td>
<td>178</td>
<td>24</td>
<td>44%</td>
</tr>
<tr>
<td>2013-2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Impact

<table>
<thead>
<tr>
<th>Year</th>
<th>Sections</th>
<th>Students</th>
<th># Majors Represented</th>
<th>% of Total Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>11</td>
<td>181</td>
<td>21</td>
<td>50%</td>
</tr>
<tr>
<td>2012-2013</td>
<td>9</td>
<td>178</td>
<td>24</td>
<td>44%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>10</td>
<td>>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doubled the percentage of women in the intro courses
Had enough overage for two more sections per term
70% increase in total number of declared majors per year

We Love Computer Science So Much
Impact

<table>
<thead>
<tr>
<th>Year</th>
<th>Sections</th>
<th>Students</th>
<th># Majors Represented</th>
<th>% of Total Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>11</td>
<td>181</td>
<td>21</td>
<td>50%</td>
</tr>
<tr>
<td>2012-2013</td>
<td>9</td>
<td>178</td>
<td>24</td>
<td>44%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>10</td>
<td>>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doubled the percentage of women in the intro courses
Impact

<table>
<thead>
<tr>
<th>Year</th>
<th>Sections</th>
<th>Students</th>
<th># Majors Represented</th>
<th>% of Total Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>11</td>
<td>181</td>
<td>21</td>
<td>50%</td>
</tr>
<tr>
<td>2012-2013</td>
<td>9</td>
<td>178</td>
<td>24</td>
<td>44%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>10</td>
<td>>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doubled the percentage of women in the intro courses

Had enough overage for two more sections per term
Impact

<table>
<thead>
<tr>
<th>Year</th>
<th>Sections</th>
<th>Students</th>
<th># Majors Represented</th>
<th>% of Total Enrollments</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004-2005</td>
<td>3</td>
<td>29</td>
<td>8</td>
<td>9%</td>
</tr>
<tr>
<td>2011-2012</td>
<td>11</td>
<td>181</td>
<td>21</td>
<td>50%</td>
</tr>
<tr>
<td>2012-2013</td>
<td>9</td>
<td>178</td>
<td>24</td>
<td>44%</td>
</tr>
<tr>
<td>2013-2014</td>
<td>10</td>
<td>>200</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Doubled the percentage of women in the intro courses

Had enough overage for two more sections per term

70% increase in total number of declared majors per year
Did This Generate Interest?

- After intro CS:
 - 55% interested in CS or applications of computing
 - expect to take additional CS courses? 60% say “yes” or “maybe”
Did This Generate Interest?

- After intro CS:
 - 55% interested in CS or applications of computing
 - expect to take additional CS courses? 60% say “yes” or “maybe”

- Data Structures have been 13% women over a multi-year period, except...
 - This year - 33% women
 - This term - 42% women!
How can we sustain interest?

More excitement, engagement, and utility.....

- Natural Language Processing
- Data Visualization
- Modeling & Simulation
- Web Programming
- The Computer Science of Computer Games
- Intro to Bioinformatics

plus the usual route into the major
Data Visualization

29% OF THE HOUSE OF REPRESENTATIVES
All but 2 U.S. Presidents have been Greek since their founding
63% of U.S. Cabinet members since 1900 have been Greek
40 OF THE 47 U.S. SUPREME COURT JUSTICES ARE GREEK

All Apollo 11 astronauts were Greek
2% of the population is Greek

43% OF 100 MEMBERS OF THE US SENATE ARE GREEK
85% of 7 out of 10 in who's who are Greek

Fortune 500 Executives are Greek
7 million is raised per year by Greeks for charities

Greeks give about 850,000 volunteer hours a year
Greeks are more likely to participate in community service activities after graduation

Over 70% of Greeks graduate as opposed to 50% of non-Greeks
43 of 50 of the largest American corporations are headed by Greeks

We Love Computer Science So Much
We Love Computer Science So Much
And if we get some women, then what?

ACM-W supports, celebrates, and advocates internationally for the full engagement of women in all aspects of the computing field.....
ACM-W is committed to

-ACM as an organization (increase membership)
-women members of ACM and women in computing in general
-putting ourselves out of business!
Primary Programs

- Scholarships
- Regional women in computing celebrations
- Chapters

- Athena Award

Katherine Yelick

Speaking at SC 2013
Regional Celebrations

- Approx. 25 distinct conferences, 12-13 each year
- 100-125 attendees, primarily students
- usually 24 hours
- career fair, poster competition, resume review
- research presentations, lightning talks, industry panels
Regional Conferences & Chapters

We Love Computer Science So Much
Regional Conferences & Chapters

We Love Computer Science So Much
Regional Conferences & Chapters

We Love Computer Science So Much
Regional Conferences & Chapters

We Love Computer Science So Much
Where are they?

- Atlantic Canada
- Ontario
- New Zealand
- Pune, India
- Europe (forthcoming)
- Pacific Northwest
- Southern Cal.
- Rocky Mountains
- New Mexico
- Utah
- MO-IA-KS
- Northern KY
- KY Community Colleges
- Indiana
- Ohio
- Carolinas
- MD-DC-VA
- New York (upstate)
- Tennessee
- and next....

We Love Computer Science So Much
SouthEast Women in Computing Conference
November 13-15, 2013
Guntersville State Park, AL