I. PROJECT DESCRIPTION

Design and implement an encryption/decryption system that reads a file contains raw ECG data samples, quantized the ECG signal (convert the signal’s from analog to digital or vice versa using an 8-bit encoder/decoder), and then encrypt/decrypt the digital form of the ECG signal. Figure 1 depicted our ECG-based encryption/decryption system’s data processing blocks.

Quantizer (8-bit Encoder/Decoder) (40 points)

The quantizer will read an ECG raw data signal and convert it from analog to digital. Each ECG pulse contains 104 data samples. You will be designing and implementing an 8-bit encoder/decoder that maps each analog sample in the ECG raw data into an 8-bit binary code. Each unique analog data sample must be mapped into a unique 8-bit binary code. In this project, you will be given a data file that contains 4 ECG pulses with a total of 416 samples. The data samples was collected from a single human subject (see Figure 2).
Encryption/Decryption Algorithms:

In this project, two encryption engines are integrated into the ECG-based crypto system:

I. **Asymmetric Encryption (35 points)**

Knapsack Algorithm with ECB Mode

The Encryption/Decryption engine will be based on the Knapsack public/private asymmetric cipher scheme. Encryption and decryption will be performed on the ECG digital signal.

- You will need to generate private and the public keys for the Knapsack crypto system
- Private key will include SIK and a conversion factor
- Public key will include the GK and a value n
- Your scheme must be able to encrypt/decrypt 8-bit taken from the ECG-digital signal at once.

For more detail see your Knapsack lecture slides

II. **Symmetric Encryption (15 points)**

A5/1 Algorithm with Cipher-Feedback Mode

Block cipher can also be implemented as a self-synchronizing stream cipher; this called *Cipher-Feedback Mode* (CFB) mode. In CFB mode, data can be encrypted in units smaller than the block size. For Example, in our ECG-based encryption/decryption engine, each ECG pulse contains 13 blocks of 64-bit data (using an 8-bits code for each sample in the ECG-pulse). In this project, you will be implementing an 8-bit CFB mode working on a 64-bit block of ECG data. A block algorithm in CFB mode operates on a queue the size of the input block. Initially, the queue is filled with an IV, as in CBC mode. The queue is encrypted and the left-most eight-bits of the result are XORed with the first 8-bit ECG data code from the digital signal to become the first 8-bit cipher code. The same eight bits are also moved to the right-most eight bits positions of the queue, and all other bits move eight bit to the left. The eight left-most bits are discarded. To generate a 64-bit ciphertext block, CFB will take 8 rounds. The generated 64-bit ciphertext block B_{i+1} will be used to initialize the CFB’s queue of the next plaintext block B_i. Decryption is the reverse of the above process. The encryption scheme is based on A5/1 (see Figure 3).
II. PROJECT REPORT AND SUBMISSION REQUIREMENTS

• Write and submit a final report that outline your design. Describe all the classes that you design and developed for this project.
• Each team will require to submit one executable Java application. Your Java application must include all the .class files, executable file, and the .java files.
• Submit a hardcopy of the user manual and the project report
• In your report include graphs for the encrypted data
• Encryption keys and Initialization vectors should be user input data.
• On the project due date. Each team will be asked to give a live demo during class time.
• No libraries or dependencies class are allowed during the design and the implementation for this works. All algorithms must be coded by the developers.

Reward points for your work:

- There will be a project contest among all teams. The team with the best GUI implementation will get 20 rewards points.
- Presenting your project at Techfest (April 14th) (10 points)

Note: The authenticity of your work will be evaluated. Copying materials/code from online resources is prohibited and will not be tolerated.

III. PROJECT TEAMS:

• Team 1: Bagabass Ayman, Barney Joshua, Dickinson Trevor, Ecklund Jessica, Gray Cameron
• Team 2: Cochrane Kelly, Exley Brett, Guzman Andrew, Nguyen Toan, Nolan Mitchell
• Team 3: Hope Henderson, McGregor, McQuaig Matthew, Patel Jaykishan, Patel Radhesh, Patel Shyam
• Team 4: Mullis Joshua, Nye Luke, Patel Keyur, Perez Jesse, Stewart Dennis

IV. GROUP MEETING (10 points)

Weekly meeting at the instructor office will be conducted with each group to monitor your progress.