Inside the Computer System
How Computers Represent Data

• **Binary numbers**
 o Only 0s and 1s

• **Bit**
 o Smallest piece of data a computer can work with
 o Either “on” or “off,” a 0 or a 1
 o Eight bits—**byte**—a single unit of storage
How Computers Represent Data

• Modem’s data transfer rate is in bits per second
 o Example—gigabits per second (Gbps)

• Data storage is in bytes
 o Kilobyte (KB)—one thousand bytes
 o Megabyte (MB)—one million bytes
 o Gigabytes (GB)—one billion bytes
 o Terabyte (TB)—one trillion bytes
How Computers Represent Data

- Computers convert binary numbers into hexadecimal (hex) numbers
 - Which use the numbers 0 through 9, followed by letters A through F

<table>
<thead>
<tr>
<th>Decimal (Base 10)</th>
<th>Binary (Base 2)</th>
<th>Hexadecimal (Base 16)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0010</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>0011</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>0100</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>0101</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>0111</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1000</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>1010</td>
<td>A</td>
</tr>
<tr>
<td>11</td>
<td>1011</td>
<td>B</td>
</tr>
<tr>
<td>12</td>
<td>1100</td>
<td>C</td>
</tr>
<tr>
<td>13</td>
<td>1101</td>
<td>D</td>
</tr>
<tr>
<td>14</td>
<td>1110</td>
<td>E</td>
</tr>
<tr>
<td>15</td>
<td>1111</td>
<td>F</td>
</tr>
</tbody>
</table>
How Computers Represent Data

• **Floating point notation**
 - Has no fixed number of digits before or after a decimal point
 - Enables a computer to work quickly with very large or small numbers
 - Requires special processing circuitry
How Computers Represent Data

- **Characters**
 - Letters, numbers, and symbols—converted into numbers the computer understands

- **Character code**
 - Performs the conversion
 - American Standard Code for Information Interchange (ASCII)
 - Extended Binary Coded Decimal Interchange Code (EBCDIC)
 - Unicode
| Dec | Hex | Oct | Char | | | | | | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 32 | 20 | 40 | [space] | 64 | 40 | 100 | @ | 96 | 60 | 140 | ` |
| 1 | 1 | 1 | 1 | 33 | 21 | 41 | ! | 65 | 41 | 101 | A | 97 | 61 | 141 | a |
| 2 | 2 | 2 | 2 | 34 | 22 | 42 | " | 66 | 42 | 102 | B | 98 | 62 | 142 | b |
| 3 | 3 | 3 | 3 | 35 | 23 | 43 | # | 67 | 43 | 103 | C | 99 | 63 | 143 | c |
| 4 | 4 | 4 | 4 | 36 | 24 | 44 | $ | 68 | 44 | 104 | D | 100 | 64 | 144 | d |
| 5 | 5 | 5 | 5 | 37 | 25 | 45 | % | 69 | 45 | 105 | E | 101 | 65 | 145 | e |
| 6 | 6 | 6 | 6 | 38 | 26 | 46 | & | 70 | 46 | 106 | F | 102 | 66 | 146 | f |
| 7 | 7 | 7 | 7 | 39 | 27 | 47 | ' | 71 | 47 | 107 | G | 103 | 67 | 147 | g |
| 8 | 8 | 10 | | 40 | 28 | 50 | (| 72 | 48 | 110 | H | 104 | 68 | 150 | h |
| 9 | 9 | 11 | | 41 | 29 | 51 |) | 73 | 49 | 111 | I | 105 | 69 | 151 | i |
| 10 | A | 12 | | 42 | 2A | 52 | * | 74 | 4A | 112 | J | 106 | 6A | 152 | j |
| 11 | B | 13 | | 43 | 2B | 53 | + | 75 | 4B | 113 | K | 107 | 6B | 153 | k |
| 12 | C | 14 | | 44 | 2C | 54 | . | 76 | 4C | 114 | L | 108 | 6C | 154 | l |
| 13 | D | 15 | | 45 | 2D | 55 | - | 77 | 4D | 115 | M | 109 | 6D | 155 | m |
| 14 | E | 16 | | 46 | 2E | 56 | . | 78 | 4E | 116 | N | 110 | 6E | 156 | n |
| 15 | F | 17 | | 47 | 2F | 57 | / | 79 | 4F | 117 | O | 111 | 6F | 157 | o |
| 16 | G | 18 | | 48 | 30 | 60 | 0 | 80 | 50 | 120 | P | 112 | 70 | 160 | p |
| 17 | H | 19 | | 49 | 31 | 61 | 1 | 81 | 51 | 121 | Q | 113 | 71 | 161 | q |
| 18 | I | 20 | | 50 | 32 | 62 | 2 | 82 | 52 | 122 | R | 114 | 72 | 162 | r |
| 19 | J | 21 | | 51 | 33 | 63 | 3 | 83 | 53 | 123 | S | 115 | 73 | 163 | s |
| 20 | K | 22 | | 52 | 34 | 64 | 4 | 84 | 54 | 124 | T | 116 | 74 | 164 | t |
| 21 | L | 23 | | 53 | 35 | 65 | 5 | 85 | 55 | 125 | U | 117 | 75 | 165 | u |
| 22 | M | 24 | | 54 | 36 | 66 | 6 | 86 | 56 | 126 | V | 118 | 76 | 166 | v |
| 23 | N | 25 | | 55 | 37 | 67 | 7 | 87 | 57 | 127 | W | 119 | 77 | 167 | w |
| 24 | O | 26 | | 56 | 38 | 70 | 8 | 88 | 58 | 130 | X | 120 | 78 | 170 | x |
| 25 | P | 27 | | 57 | 39 | 71 | 9 | 89 | 59 | 131 | Y | 121 | 79 | 171 | y |
| 26 | Q | 28 | | 58 | 3A | 72 | : | 90 | 5A | 132 | Z | 122 | 7A | 172 | z |
| 27 | R | 29 | | 59 | 3B | 73 | ; | 91 | 5B | 133 | [| 123 | 7B | 173 | { |
| 28 | S | 30 | | 60 | 3C | 74 | % | 92 | 5C | 134 | \ | 124 | 7C | 174 | | |
| 29 | T | 31 | | 61 | 3D | 75 | = | 93 | 5D | 135 | | | 125 | 7D | 175 | } |
| 30 | U | 32 | | 62 | 3E | 76 | > | 94 | 5E | 136 | ^ | 126 | 7E | 176 | ~ |
| 31 | V | 33 | | 63 | 3F | 77 | ? | 95 | 5F | 137 | ` | 127 | 7F | 177 | |
Introducing the System Unit

- **System unit**
 - Case that contains the major hardware components of a computer
 - Come in different styles
 - **Footprints**
 - Amount of space that the unit uses
Introducing the System Unit

- **System unit (con’t.)**
 - Some have embedded biometric authentication devices such as fingerprint readers, retina scanners, and face recognition systems to prevent unauthorized access.
 - **Form factor**—specifies how the internal components are located within the system unit.
Inside the System Unit

- All-in-one system unit
- Notebook system unit
- Desktop system unit
- Smartphone system unit
Inside the System Unit

- System unit main components
 - Motherboard
 - CPU
 - Power supply
 - Cooling fan
 - Internal speaker
 - Drive bays
 - Expansion slots
Inside the System Unit
Inside the System Unit

- Notebook motherboard
- Processor
- Cooling fan
- Power supply
What’s on the Motherboard?

- Memory module (RAM)
- Modem card
- Network interface card
- Sound card
- Video card
What’s on the Motherboard?

• **Motherboard**
 - Printed circuit board that contains the electrical circuitry for the computer
 - The majority of parts found on the motherboard are **integrated circuits**.
 - Includes millions of **transistors** and carries electrical current
 - A switch that is able to control the electrical signal flow to the circuit
What’s on the Motherboard?

• **Central processing unit (CPU)**
 - Integrated circuit chip that processes electronic signals
 - Also known as a microprocessor or processor
What’s on the Motherboard?

• **CPU (con’t.)**
 - Is usually covered by a **heat sink**
 - A heat-dissipating component that drains heat from the chip
 - **Instruction**—An operation performed by the CPU and assigned a specific number
 - **Instruction set**—The list of CPU instructions for the operations

<table>
<thead>
<tr>
<th>Mnemonic</th>
<th>Operand Number</th>
<th>Operation</th>
<th>Opcode</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDA</td>
<td>1</td>
<td>Load memory data to ACC</td>
<td>0000</td>
</tr>
<tr>
<td>ADD</td>
<td>1</td>
<td>Add ACC data with B register data</td>
<td>0001</td>
</tr>
<tr>
<td>SUB</td>
<td>1</td>
<td>Sub B register data from data in ACC</td>
<td>0010</td>
</tr>
<tr>
<td>OUT</td>
<td>0</td>
<td>Move out the ACC data to the output register</td>
<td>1110</td>
</tr>
<tr>
<td>HLT</td>
<td>0</td>
<td>Stop program</td>
<td>1111</td>
</tr>
</tbody>
</table>
What’s on the Motherboard?

- **CPU (con’t.)**
 - **Control unit**—one of the two main parts
 - Retrieves instructions from memory
 - Interprets and performs those instructions
 - Manages the **machine cycle** or **processing cycle**, the four-part process performed by the CPU
 - **Arithmetic logic unit (ALU)**—one of the two main parts
 - Performs arithmetic and logical operations
 - Involve adding, subtracting, multiplying, dividing
 - Logical operations involve comparisons between two or more data items.
What’s on the Motherboard?

• **Machine cycle**

 o **Instruction cycle**
 • **Fetch**: Retrieves program instructions
 • **Decode**: Determines what the program is telling the computer to do

 o **Execution cycle**:
 • **Execute**: Performs the requested action
 • **Store**: Stores the results to an internal register

• **Registers**—store data when it must be temporarily stored in the CPU
What’s on the Motherboard?

INSTRUCTION CYCLE

1. **Fetch**
 - Retrieves the next program instruction from memory

2. **Decode**
 - Determines what the program is telling the computer to do

EXECUTION CYCLE

3. **Execute**
 - Performs the requested instruction

4. **Store**
 - Stores the results to an internal register (a temporary storage location) or to memory
Factors that affect the performance of a CPU include:

- Number of existing transistors
- Data bus width and word size
- Clock speed
- Operations per microprocessor cycle
- Use of parallel processing
- Type of chip
What’s on the Motherboard?

- **Data bus**
 - Group of parallel wires that connect the CPU’s internal components
 - Width measured in bits
 - Maximum number of bits the CPU can process at once is called the **word size**
 - Determines which operating systems and software a CPU can run
What’s on the Motherboard?

• **System clock**
 - Electronic circuit that produces rapid pulses and coordinates the computer’s internal activities.
 - **Clock speed**—measurement of the electrical pulses generated by the system clock, usually measured in gigahertz (GHz)

![Diagram showing processor cycle](image)
What’s on the Motherboard?

• **System clock (con’t.)**

 o **Superscalar architecture**—enables the CPU to perform more than one instruction for each clock cycle

 o **Pipelining**—enables the CPU to process more than one instruction at a time improving performance

Parallel processing with pipelines

- **pipeline 1**
 - fetch
 - decode
 - execute

- **pipeline 2**
 - decode
 - execute
 - fetch

- **pipeline 3**
 - execute
 - fetch
 - decode

Each pipeline is a separate part of the CPU