Policy, Models, and Trust
Security Policy

• A **security policy** is a well-defined set of rules that include the following:
 • **Subjects**: the agents who interact with the system,
 • **Objects**: the informational and computational resources that a security policy is designed to protect and manage.
 • Examples include critical documents, files, and databases, and computational resources include servers, workstations, and software.
 • **Actions**: the things that subjects may or may not do with respect to the objects.
 • Examples include the reading and writing of documents, updating software on a web server, and accessing the contents of a database.
 • **Permissions**: mappings between subjects, actions, and objects, which clearly state what kinds of actions are allowed or disallowed.
 • **Protections**: the specific security features or rules that are included in the policy to help achieve particular security goals, such as confidentiality, integrity, availability, or anonymity.
Security Models

• A **security model** is an abstraction that provides a conceptual language for administrators to specify security policies.

• **Security models define hierarchies of access or modification rights** that members of an organization can have, so that subjects in an organization can easily be granted specific rights based on the position of these rights in the hierarchy.

• Examples include military classifications of access rights for documents based on concepts like
 • Unclassified
 • Confidential
 • Secret
 • Top secret
Discretionary Access Control

• **Discretionary access control**, or **DAC**, refers to a scheme where users are given the ability to determine the permissions governing access to their own files.

 - **DAC** typically features the concept of both users and groups, and allows users to set access-control measures in terms of these categories.
 - In addition, DAC schemes allow users to grant privileges on resources to other users on the same system.
Mandatory Access Control

• **Mandatory access control** is a more restrictive scheme that does not allow users to define permissions on files, regardless of ownership. *Instead, security decisions are made by a central policy administrator.*

 • Each security rule consists of a **subject**, which represents the party attempting to gain access, an **object**, referring to the resource being accessed, and a series of permissions that define the extent to which that resource can be accessed.

• **Security-Enhanced Linux (SELinux)** incorporates mandatory access control.
Trust Management

• A trust management system is a formal framework for specifying security policy in a precise language, which is usually a type of logic or programming language, together with a mechanism for ensuring that the specified policy is enforced.

• A trust management system consists of two main components:
 • Policy language
 • Compliance checker

• Policy rules are specified in the policy language and are enforced by the compliance checker.
Trust Management Systems

• A trust management system typically has rules describing:

• **Actions**: operations with security-related consequences on the system

• **Principals**: users, processes, or other entities that can perform actions on the system

• **Policies**: precisely written rules that govern which principals are authorized to perform which actions

• **Credentials**: digitally signed documents that bind principal identities to allowable actions, including the authority to allow principals to delegate authority to other principals.
Policy Languages-KeyNote

- KeyNote define an application or a program that uses KeyNote.
- A policy compliance value (PCV) is the answer issued by KeyNote in response to a request by a principle to perform some action.
 - Application queries the KeyNote system when a principle requests action.
 - Action is described by a set of attribute-value pairs known as **action-attribute set**.
- KeyNote replies with a PCV indicating whether the action is allowed or not.
Policy Languages - XACML

- The Extensible Access control Markup language (XACML) was released in 2009
- XACML leverages XML to define security policies and described how these policies should be enforced
- XACML components:
 - Policy Administration Point (PAP)
 - Policy Decision Point (PDP)
 - Policy Enforcement Point (PEP)
 - Policy Information Point (PIP)
Access Control Models

• Various models have been developed to formalize mechanisms to protect the **confidentiality** and **integrity** of documents stored in a computer system.
 • The Bell-La Padula (BLP) model
 • The Biba model
 • The Low-Watermark model
 • The Clark-Wilson model
 • The Chinese Wall model (The Brewer and Nash model)
The Bell-La Padula Model

• The Bell-La Padula (BLP) model is a classic mandatory access-control model for protecting confidentiality.

• The BLP model is derived from the military multilevel security paradigm, which has been traditionally used in military organizations for document classification and personnel clearance.
The Bell-La Padula Model

• The BLP model has a *strict, linear ordering on the security of levels* of documents, so that each document has a specific security level in this ordering and each user is assigned a strict level of access that allows them to view all documents with the corresponding level of security or below.
Total Orders and Partial Orders

• A linear ordering for documents can be defined in terms of a comparison rule, . We say that such a rule defines a total order on a universe set, U, if it satisfies the following properties:
 1. **Reflexivity:** If x is in U, then x ≤ x.
 2. **Antisymmetry:** If x ≤ y and y ≤ x, then x = y.
 3. **Transitivity:** If x ≤ y and y ≤ z, then x ≤ z.
 4. **Totality:** If x and y are in U, then x ≤ y or y ≤ x.

• All of the usual definitions of “less than or equal to” for numbers, such as integers and real numbers, are total orders.

• If we drop the requirement of totality, we get a **partial order**.
 • The classic example of a partial order is the set of courses taught at a college or university, where we say that, for two courses A and B, A ≤ B, if A is a prerequisite for B.
How the BLP Model Works

• The security levels in BLP form a partial order, \leq.
• Each object, x, is assigned to a security level, $L(x)$. Similarly, each user, u, is assigned to a security level, $L(u)$. Access to objects by users is controlled by the following two rules:
 • Simple security property. A user u can read an object x only if $L(x) \leq L(u)$.
 • *-property. A user u can write (create, edit, or append to) an object x only if $L(u) \leq L(x)$.
• The simple security property is also called the “no read up” rule, as it prevents users from viewing objects with security levels higher than their own.
• The *-property is also called the “no write down” rule. It is meant to prevent propagation of information to users with a lower security level.
Defining Security Levels Using Categories

- The BLP defines the partial order of security levels starting from a set **B** of **basic levels** that have a linear order and a collection of **S** of categories called (**compartments**)
 - Security level \(L(x) \) consists of a pair \((b(x), S(x))\), where \(b(x) \in B \) and \(S(x) \) is a subset of \(S \)
 - The level of \(x \) precedes the level of \(y \) if the basic level of \(x \) is less than basic level of \(y \) and the subset of categories of \(x \) is contained in the subset of categories of \(y \)
 \((b(x), S(x)) \leq (b(y), S(y)) \iff b(x) \leq b(y) \) and \(S(x) \) is a subset of \(S(y) \)
The Biba Model

• The Biba model has a similar structure to the BLP model, but it addresses integrity rather than confidentiality.

• Objects and users are assigned integrity levels that form a partial order, similar to the BLP model.

• The integrity levels in the Biba model indicate degrees of trustworthiness, or accuracy, for objects and users, rather than levels for determining confidentiality.
 • For example, a file stored on a machine in a closely monitored data center would be assigned a higher integrity level than a file stored on a laptop.
 • In general, a data-center computer is less likely to be compromised than a random laptop computer. Likewise, when it comes to users, a senior employee with years of experience would have a higher integrity level than an intern.
The Biba Model Rules

• The access-control rules for Biba are the reverse of those for BLP. That is, Biba does not allow reading from lower levels and writing to upper levels.

• If we let \(I(u) \) denote the integrity level of a user \(u \) and \(I(x) \) denote the integrity level for an object, \(x \), we have the following rules in the Biba model:
 • A user \(u \) can read an object \(x \) only if \(I(u) \leq I(x) \).
 • A user \(u \) can write (create, edit or append to) an object \(x \) only if \(I(x) \leq I(u) \).

• Thus, the Biba rules express the principle that information can only flow down, going from higher integrity levels to lower integrity levels.
Role-Based Access Control

• The role-based access control (RBAC) model can be viewed as an evolution of the notion of group-based permissions in file systems.

• An RBAC system is defined with respect to an organization, such as company, a set of resources, such as documents, print services, and network services, and a set of users, such as employees, suppliers, and customers.
RBAC Components

• A **user** is an entity that wishes to access resources of the organization to perform a task. Usually, users are actual human users, but a user can also be a machine or application.

• A **role** is defined as a collection of users with similar functions and responsibilities in the organization. Examples of roles in a university may include “student,” “alum,” “faculty,” “dean,” “staff,” and “contractor.” In general, a user may have multiple roles.
 - Roles and their functions are often specified in the written documents of the organization.
 - The assignment of users to roles follows resolutions by the organization, such as employment actions (e.g., hiring and resignation) and academic actions (e.g., admission and graduation).

• A **permission** describes an allowed method of access to a resource.
 - More specifically, a permission consists of an operation performed on an object, such as “read a file” or “open a network connection.” Each role has an associated set of permissions.

• A **session** consists of the activation of a subset of the roles of a user for the purpose of performing a certain task.
 - For example, a laptop user may create a session with the administrator role to install a new program.
 - Sessions support the principle of least privilege.
Hierarchical RBAC

• In the role-based access control model, roles can be structured in a hierarchy similar to an organization chart.

• More formally, we define a partial order among roles by saying that a role R1 inherits role R2, which is denoted

\[R1 > R2, \]

if R1 includes all permissions of R2 and R2 includes all users of R1.

• When \(R1 \geq R2 \), we also say that role R1 is senior to role R2 and that role R2 is junior to role R1.
 • For example, in a company, the role “manager” inherits the role “employee” and
 • Also, in a university, the roles “undergraduate student” and “graduate student” inherit the role “student.”
Visualizing Role Hierarchy

- Role hierarchies can be graphically represented with a diagram where each role is connected to its immediate predecessor and successors in the hierarchy.

\[R_1 \geq R_2 \geq R_3 \]
Constrained RBAC

- RBAC allows us to define constraints that prevent users from having incompatible roles that create conflicts of interest
 - A Constraint with a pair of roles (R1, R2)
 - **Separation of duty** A more general constraint is defined by a pair (S, k), where S is a subset of roles and K≥ 2 is an integer
 - **Static:** The constraint holds for the assignment of users to roles. No user can assigned to k or more roles in S
 - **Dynamic:** The constraints holds for the activation of roles of users in sessions. That is no user can have k or more roles in S activated in a session.
 - Example:

 (\{supervisor, traveler\}, 2)