Network Security
General Network Security

• Security policy
 – An organization’s set of rules regarding how to handle and protect sensitive data
• A security policy should include:
 – Physical security
 – Acceptable use of applications
 – Safeguarding data
 – Remote access to the network
 – Data center
 – Wireless security
General Network Security (continued)

• An effective security policy implements multiple layers of security
• A security policy should have three goals:
 – To prevent the hacker from getting access to critical data
 – To slow down the hacker enough to be caught
 – To frustrate the hacker enough to cause him or her to quit the hacking attempt
• When designing a security policy, take care to specify exactly what you are trying to protect
Protecting the Hardware

• The first level of security in any network is **physical security**

• Critical nodes of an organization should be separated from the general workforce

• The nodes should be kept in a central location where only a select group of people are allowed

• If office space is limited and nodes must be located near employees
 – The servers should at least be stored in a locked cabinet

![Server cabinet](image-url)
Protecting Software

• The primary threats against software are malware and hackers

• **Malware**
 – Refers to malicious programs that have many different capabilities

• Hackers are usually driven by greed, ego, and/or vengeance
 – They look to make personal gains through system vulnerabilities
Malware Prevention

• The most important elements of a prevention plan
 – Installing and maintaining virus prevention software,
 – Conducting virus awareness training for network users

• Types of malware
 – Virus
 – Worm
 – Macro Virus
 – Polymorphic Virus
 – Stealth Virus
Malware Prevention (continued)

• Types of malware (continued)
 – Boot-Sector Virus
 – Trojan or Trojan Horse
 – Logic Bomb

• Virus prevention software
 – Available for installation on entire networks
 – Usually includes a version that will run on clients as well as servers
 – Must be updated regularly to ensure your network is protected against all the latest malware threats
Malware Prevention (continued)

• User training
 – Users must be trained to update their antivirus software daily or, at a bare minimum, weekly
 – Users also must learn how viruses are transmitted between computers
 – Teach users to scan removable devices with the virus scanning software before using them
Firewalls

- **Firewall**
 - The primary method of keeping hackers out of a network
 - Normally placed between a private LAN and the public Internet, where they act like gatekeepers
 - Can be a hardware device or it can be software
 - Types: personal and enterprise

- All data packets entering or exiting the network have to pass through an enterprise-level firewall
 - Firewall filters (or analyzes) packets
Firewalls (continued)

• Four firewall topologies
 – Packet-filtering router
 – Single-homed bastion
 – Dual-homed bastion
 – Demilitarized zone (DMZ)
Figure 14-2 Packet-filtering router
All traffic is screened by the bastion host

Figure 14-3 Single-homed bastion
Figure 14-4 Dual-homed bastion
Figure 14-5 Demilitarized zone
Firewalls (continued)

• **Intrusion Detection Systems (IDS)**
 – A security device that can detect a hacker’s attempts to gain access to the network
 – Can also detect virus outbreaks, worms, and distributed denial of service (DDoS) attacks

![Diagram of Intrusion Detection System](image)

• **Intrusion Prevention Systems (IPS)**
 – Like an IDS, except that it is placed in line so all packets coming in or going out of the network pass through it
 – This allows an IPS to drop packets based on rules defined by the network administrator
Permissions, Encryption, and Authentication

• Permission
 – An official approval that allows a user to access a specific network resource

• Encryption
 – Often consists of using security algorithms to scramble and descramble data
 – Types of algorithms
 • Symmetric key
 • Asymmetric key
Permissions, Encryption, and Authentication (continued)

Figure 14-6 Symmetric key encryption
Permissions, Encryption, and Authentication (continued)

- Message is encrypted with user A’s Private key
- User B must have user A’s public key to decrypt the message

Figure 14-7 Asymmetric key encryption
Permissions, Encryption, and Authentication (continued)

• **Secure Sockets Layer**
 – A means of encrypting a session between two hosts through the use of digital certificates, which are based on asymmetric key encryption

• **Authentication**
 – The process by which users verify to a server that they are who they say they are
 – There are several types of authentication
 • Password authentication protocol (PAP)
 • Challenge handshake authentication protocol (CHAP)
Permissions, Encryption, and Authentication (continued)

• Additional authentication services supported by Cisco:
 – Remote Authentication Dial-in User Service (RADIUS)
 – Terminal Access Controller Access Control System Plus (TACACS+)

• These two common security protocols are based on the **Authentication, Authorization, and Accounting (AAA)** model
Mitigating Security Threats

• The three basic strategies for mitigating security threats are:
 – Using the SSH protocol to connect to your routers and switches rather than telnet
 – Turning off unnecessary services
 – Keeping up-to-date on security patches (software releases) with a patch management initiative
Secure Shell (SSH) Connections

- **Secure Shell (SSH) protocol**
 - Sends all data encrypted
- The two version of SSH are SSH Version 1 and SSH Version 2
 - SSH Version 2 is the recommended version
- Some SSH commands are mandatory and others are optional
- You must also generate an RSA key pair (asymmetric key encryption)
 - Which enables SSH
Secure Shell (SSH) Connections (continued)

• The preferred method is to implement SSH on all VTY lines
 – Which ensures that all remote IP sessions to the router will be protected in the SSH tunnel
• The command sequence for enabling SSH is:

 Router(config)#hostname SshRouter
 SshRouter(config)#ip domain-name sshtest.com
 SshRouter(config)#crypto key generate rsa
 The name of the keys will be:
 SshRouter.sshtest.com
Disabling Unnecessary Services

• You should disable the services unless your organization uses them

• Methods
 – Go through the CLI and enter a series of commands for each service
 – Use the Security Audit Wizard in the Cisco Security Device Manager (SDM)
Disabling Unnecessary Services (continued)

- The following services are unnecessary on most networks:

 - TCP Small Servers Service
 - UDP Small Servers Service
 - IP Bootp Server Service
 - Cisco Discovery Protocol (CDP)
 - IP Source Route
 - Maintenance Operations Protocol (MOP)
 - Directed Broadcast
 - ICMP Redirects
 - Proxy ARP
 - IDENT
 - IPv6
 - Finger Service
 - PAD Service
Patch Management

• Your organization’s patch management program should account for all software in the organization
 – Including commercial applications as well as applications developed in-house
• A patch management program should take into account the major software vendor’s patch release schedules
 – As well as your organization’s business goals and needs
• Not all patches released by vendors are flawless
Virtual Private Networks (VPNs)

- **Virtual Private Networks (VPNs)**
 - A popular technology for creating a connection between an external computer and a corporate site over the Internet
- To establish a VPN connection, you need VPN-capable components
- **Client-to-site VPN** (also known as remote user VPN)
 - A VPN that allows designated users to have access to the corporate network from remote locations
Virtual Private Networks (VPNs)

Figure 14-8 A client-to-site or a remote user VPN
Virtual Private Networks (VPNs)

• **Site-to-site VPN**
 – A VPN that allows multiple corporate sites to be connected over low-cost Internet connections

• You can choose from several tunneling protocols to create secure, end-to-end tunnels
 – Point-to-Point Tunneling Protocol (PPTP)
 – Layer 2 Tunneling Protocol (L2TP)
 – Generic Routing Encapsulation (GRE)
Virtual Private Networks (VPNs)

Figure 14-9 Site-to-site VPN
IPSec

• IPSec
 – A suite of protocols, accepted as an industry standard, which provides secure data transmission over layer 3 of the OSI model
 – An IP standard and will only encrypt IP-based data
• IPSec supports two modes of operation: transport mode and tunnel mode
IPSec (continued)

• **Transport mode**
 – Primarily geared toward encrypting data that is being sent host-to-host
 – Only encrypts and decrypts the individual data packets
 • Which results in quite a bit of overhead on the processor

• **Tunnel mode**
 – Encrypts all data in the tunnel and is the mode supported by Cisco components
IPSec Protocols

- Two IPSec protocols have been developed to provide packet-level security
- They include the following characteristics:
 - Authentication Header (AH)
 - Encapsulating Security Payload (ESP)
IPSec Authentication Algorithms

- Authentication algorithms use one of two **Hashed Message Authentication Codes (HMAC)**
 - **MD5** (message-digest algorithm 5)
 - **SHA-1** (secure hash algorithm)
- An HMAC is a secret key authentication algorithm that ensures data integrity and originality
 - Based on the distribution of the secret key
- Cryptographic software keys are exchanged between hosts using an HMAC
IPSec Encryption Algorithms

- For encryption, the two most popular algorithms on IPSec networks are **3DES** (tripleDES) and **AES**
 - These protocols are used solely with the IPSec ESP protocol
- Remember, AH does not support encryption
IPSec Key Management

• You need to pay attention to how keys are handed from node to node during IPSec authentication

• Two options are available
 – Deliver the secret keys to all parties involved via e-mail or on disk
 – Utilize a key management protocol

• Key management is defined by the Internet Security Association and Key Management Protocol (ISAKMP)
 – Governed by RFC 2407 and 2408
IPSec Transform Sets

• A transform set
 – A configuration value (or simply stated, a command) that allows you to establish an IPSEC VPN on a Cisco firewall

• You can create a transform set through the CLI or you can simply use the SDM GUI

• When creating an IPSec VPN you must specify a protocol, the algorithm, and the method of key management