Chapter 20 Lists, Stacks, Queues, Trees, Heaps, and Priority Queues

1. A data structure is a collection of data organized in some fashion.

 In object-oriented thinking, a data structure is an object that stores other objects, referred to as data or elements. So some people refer a data structure as a container object or a collection object. To define a data structure is essentially to declare a class.

2. Two limitations: (1) once an array is created, its size cannot be altered; (2) it does not provide adequate support for insertion and deletion operations.

3. MyArrayList is implemented using an array and an array is a fixed-size data structure. But MyArrayList is considered as a dynamic data structure, because its storage size changes behind the scene and hidden from the user.

4. Providing both interface and abstract class in the design makes it easy for the user to use the code. The user can use either the interface or the abstract class whichever is convenient.

 The abstract class MyAbstractList is provided for convenience. For this reason, it is called a convenience class.

5. You have to add an object to list, not a primitive data value.

6. data will be null.

7. If the number of elements is fixed in the program, use array is more efficient. If the number of elements changes in the program, you may use ArrayList or LinkedList.

8. If you have to add or delete the elements anywhere in a list, use LinkedList.

9. Using inheritance: You can declare the stack class by extending the array list class, and the queue class by extending the linked list class. Using composition: You can declare an array list as a data field in the stack class, and a linked list as a data field in the queue class. Both designs are fine, but using composition is better because it enables you to declare a complete new stack class and queue class without inheriting the unnecessary and inappropriate methods from the array list and linked list.
10. Line 5, new MyStack() is not an instance of MyList.

11. If a set of the same elements is inserted into a binary tree in two different orders, will the two corresponding binary trees look the same? No. Will the inorder traversal be the same? Yes. Will the postorder traversal be the same? No. Will the preorder traversal be the same? No.

12. A binary tree is complete if every level of the tree is full except that the last level may not be full and all the leaves on the last level are placed left-most. A heap is a binary tree with the following properties:
 - It is a complete binary tree.
 - Each node is greater than or equal to any of its children.

13. The return value will be null.

14. In a priority queue, elements are assigned with priorities. When accessing elements, the element with the highest priority is removed first. A priority queue has a largest-in, first-out behavior.